On the Algebra of Differential Invariants of a Lie Pseudo–Group

نویسندگان

  • Peter J. Olver
  • Juha Pohjanpelto
چکیده

In this paper we prove some basic theoretical results underlying the moving frame theory of pseudo-groups developed in the first two papers in this series. The first result demonstrates that a pseudo-group that acts locally freely at some sufficiently high order acts locally freely at all subsequent orders, and thus can be completely analyzed with the moving frame method. The second result is an algorithmic version of the Tresse–Kumpera theorem that states that a locally freely acting pseudo-group admits a finite generating system of differential invariants. The results will be based on moving frame methods and Gröbner basis algorithms. † Supported in part by NSF Grant DMS 01–03944. June 14, 2005

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Signature submanifolds for some equivalence problems

This article concerned on the study of signature submanifolds for curves under Lie group actions SE(2), SA(2) and for surfaces under SE(3). Signature submanifold is a regular submanifold which its coordinate components are differential invariants of an associated manifold under Lie group action, and therefore signature submanifold is a key for solving equivalence problems.

متن کامل

Differential Invariant Algebras of Lie Pseudo–Groups

The goal of this paper is to describe, in as much detail as possible, the structure of the algebra of differential invariants of a Lie pseudo-group. Under the assumption of local freeness of the prolonged pseudo-group action, we develop algorithms for locating a finite generating set of differential invariants, establishing the recurrence relations for the differentiated invariants, and fixing ...

متن کامل

Reduction of Differential Equations by Lie Algebra of Symmetries

The paper is devoted to an application of Lie group theory to differential equations. The basic infinitesimal method for calculating symmetry group is presented, and used to determine general symmetry group of some differential equations. We include a number of important applications including integration of ordinary differential equations and finding some solutions of partial differential equa...

متن کامل

Moving Frames and Differential Invariants for Lie Pseudo-groups

We survey a recent extension of the moving frames method for infinite-dimensional Lie pseudo-groups. Applications include a new, direct approach to the construction of Maurer–Cartan forms and their structure equations for pseudogroups, and new algorithms, based on constructive commutative algebra, for uncovering the structure of the algebra of differential invariants for pseudogroup actions.

متن کامل

Algorithms for Differential Invariants of Symmetry Groups of Differential Equations

We develop new computational algorithms, based on the method of equivariant moving frames, for classifying the differential invariants of Lie symmetry pseudo-groups of differential equations and analyzing the structure of the induced differential invariant algebra. The Korteweg–deVries (KdV) and Kadomtsev–Petviashvili (KP) equations serve as illustrate examples. In particular, we deduce the fir...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005